
Journal of Algebra and Applied Mathematics
Vol. 21 (2023), No.1, pp.35-52
ISSN: 2319-7234
© SAS International Publications

URL : www.sasip.net

Formulation of β-language from the

semi-deterministic pushdown

automata(SDPDA) of order n
A. Jain*, S. Jain, H. Ghazwani and G.C. Petalcorin, Jr.

Abstract.The authors of [4] introduced the notion of semi-deterministic
pushdown automata (SDPDA) of order n as a midway stage between
already known deterministic pushdown automata (DPDA) and non-
deterministic pushdown automata (NPDA). The authors of [4] also
introduced a new family of languages viz. β-languages of oder n that
lies between deterministic context-free languages and nondetermin-
istic context-free languages and have shown that given a β-language
of order n, there exists an SDPDA of the same order that accepts
exactly the given β-languages of order n. In this paper, we formulate
an equivalent β-language from the language of an SDPDA order n.

AMS Subject Classification (2020): 68Q45

Keywords: Nondeterministic pushdown automata, deterministic push-

down automata, context-free grammar

1. Introduction

We know that the nondeterministic pushdown automata (NPDA) is

the machine counterpart of context-free languages while deterministic push-

down automata (DPDA) can be associated with a subset of context-free

languages viz. deterministic context-free langauges.

Motivated by the idea to have a pushdown automata with properties

lying between that of DPDA and NPDA, the authors of [4] introduced

the notion of semi-deterministic pushdown automata (SDPDA) of order

*Corresponding author

36 A. Jain et. al

n(n ≥ 1) by controlling the choice of moves of an NPDA. The authors of

[4] also introduced the notion of β-grammar and β-language of order n as

a subclass of context-free grammar and context-free language respectively.

The class of β-languages of order n lies between deterministic context-free

languages and nondeterministic context-free languages. The authors of [4]

have further shown that given a β-language of order n, there exists an

SDPDA of the same order that accepts exactly the β-language of order n.

In this paper, we construct a β-language of order n from the language

of a given SDPDA of the same order.

2. Preliminaries

We first informally define “semi-deterministic pushdown automata

(SDPDA) of order n” as follows:

Definition 2.1 [4]. A “semi-deterministic pushdown automata(SDPDA)

of order n” is a PDA that can make atmost “n”(n ≥ 1) transitions corre-

sponding to a given input symbol (real or virtual input λ) and stack top

symbol.

We now formally define a “semi-deterministic pushdown automata

(SDPDA) of order n” as follows:

Definition 2.2 [4]. A “semi-deterministic pushdown automata(SDPDA)

of order n” consists of

1. A finite set of states denoted by Q.

2. A finite set of input symbols including the empty string symbol λ.

This is denoted by ΣU{λ}. Σ is called real input alphabet.

3. A finite set of stack symbols denoted by Γ ∪ {λ} where Γ is the real

stack alphabet.

Formulation of β-language... 37

4. A transition function δ, that takes as arguments a state, an input

symbol and stack top symbol and returns atmost n pairs of the form

(q, x) where q is the next state of the control unit and x is a string

of stack symbols which is put on the top of the stack in place of the

single stack symbol there before with left most symbol of the string

to be placed highest on the stack.

5. An initial start state q0 ∈ Q.

6. A stack start symbol Z0 ∈ Γ.

7. A set of final states F ⊆ Q.

Note that δ is defined in such a way that it needs a stack symbol and no

move is possible if the stack is empty.

We can also denote an SDPDA of order n by a “sep-tuple” notation

as

M(n) = (Q,Σ,Γ, δ, q0, Z0, F),

where M(n) is the name of the SDPDA of order n, Q is the finite set of

internal states of the control unit, Σ is the set of real input symbols, Γ is

the set of stack symbols, δ is the transition function from Q× (ΣU{λ})×Γ

to finite subset of Q × Γ∗ of order atmost n, q0 ∈ Q is the initial state of

the control unit, Z0 ∈ Γ is the stack start symbol and F ⊆ Q is the set of

the final states.

Observations

(i) SDPDA (1) ⊆ SDPDA(2) ⊆ SDPDA(3) ⊆ · · · .

(ii) For larger values of n, an SDPDA of order n behaves like an NDPDA.

We now define the “language accepted by an SDPDA of order n”.

38 A. Jain et. al

Definition 2.3 [4] (Language accepted by final state). Let M(n) =

(Q,Σ,Γ, δ, q0, Z0, F) be an SDPDA of order n. The language accepted by

M(n) is the set

L(M(n)) = {w ∈ Σ∗ : (q0, w, Z0)
∗
`

(p, λ, u), p ∈ F, u ∈ Γ∗}.

In other words, the language accepted by M(n) is the set of all strings

that can put M(n) into a final state at the end of the input string irrespec-

tive of the final stack contents. This language is referred as the “language

accepted by final state”.

Another equivalent way of defining the language accepted by an SD-

PDA of order n is to be the set of all input strings for which some sequence

of moves causes the SDPDA to empty its stack. This language is referred

to as the “language accepted by empty stack” which we formally define as

follows:

Definition 2.4 [4] (Language accepted by empty statck). For an

SDPDA M(n) = {Q,Σ,Γ, δ, q0, Z0, F), we define the “language accepted

by empty stack” to be

L′(M(n)) = {w : (q0, w, Z0)
∗
`

(p, λ, λ) for some p ∈ Q}.

The two definitions of acceptance are equivalent in the sense that if

a language can be accepted by empty stack by some SDPDA of order n,

then it can also be accepted by final state by some other SDPDA of order

n, and vice versa.

Finally, the β-grammar and β-language of order n are defined as fol-

lows:

Definition 2.5 [4]. A context-free grammar G = (V, T, S, P) is said to be

a “β-grammar of order n”(n ≥ 1) if all productions in P are of the form

A→ ax

Formulation of β-language... 39

where a ∈ T ∪ {λ} and x ∈ V ∗ and any pair (A, a) occurs atmost n times

in P . A β-grammar of order n will be denoted by β(n).

Definition 2.6 [4]. The language of β(n) will be called as “β-language of

order n”.

Remark. β-grammar of order 1 viz. β(1) is same as the simple grammar

[1-3, 7].

The authors of [4] have shown that for every β-language of order n,

there is an SDPDA of the same order that accepts it.

Theorem 2.7 [4]. For any β-language of order n, there exists an SDPDA

M(n) of order n such that

β(n) = L(M(n).

3. Construction of β-language from the lan-
guage of an SDPDA of order n

In this section, we prove the main result pertaining to the construction

of β-language (equivalently β-grammar) from the language of an SDPDA

of order n. The result is further illustrated with the help of an example.

Theorem 3.1. If L is L(M(n)) for some SDPDAM(n) = (Q,Σ,Γ, δ, q0, Z0,

φ) of order n, then L is a β-language of order n.

Proof. The construction of the associated β-grammar is based on the fact

that the contents of the stack are reflected in the variable part of the senten-

tial form while the processed input is the terminal prefix of the sentential

form. Without any loss of generality, we may assume that the SDPDA

M(n) accepts an input string iff the stack is empty after processing the

string.

40 A. Jain et. al

Now, let G (V, T, P, S) be a β-grammar where

V = {S} ∪ {[q, A, p] : q, p ∈ Q and A ∈ Γ}

= set of objects of the form [q, A, p] where q and p

are states in Q and A is a stack symbol in Γ plus the

new plus the new symbol “S′′ which is the start symbol;

T = Σ;

P is the set of productions given by

(i) for all states p ∈ Q, G has the production of the form

S → [q0, Z0, p];

(ii) if (δ(q, a,A) contains the pair (r, λ), then the production rule is

[q, A, r]→ a;

(iii) if δ(q, a,A) contains the pair (r,B1B2 · · ·Bk) where r ∈ Q and B1, B2,

· · · , Bk ∈ Γ, then the production rule is

[q, A, rk]→ a[r,B1, r1][r1, B2, r2] · · · [rk−1, Bk, rk],

where r1, r2, · · · , rk assume all possible values in Q.

The interpretation of the production rule in (iii) is that pop A and

push B1B2 · · ·Bk on the stack and go from state q to state r while reading

“a′′ (which may be λ), then use some more input to pop B1 off the stack

while going from the state r to state r1, then read some more input that

pop B2 off the stack and goes from state r1 to r2 and so on. The next effect

of all these moves is popping A ad transition of states from state q to state

rk.

Formulation of β-language... 41

Clearly, G is a β-grammar of order t where t ≤ |Q|kn. However, after

removing the useless variables and useless productions, we get the minimal

equivalent β-grammar of order exactly equal to n.

We note that the production rules in G are defined so that

[q, A, p] =⇒∗G w for w ∈ Σ∗

iff w causes M(n) to erase A from its stack by some sequence of moves

beginning in state q and ending in state p.

There might be some states “t′′ that cannot be reached from state q

while erasing A. In that case, the resulting variables [q, A, t] are useless

symbols and do not affect the language generated by the β-grammar. We

shall remove such type of useless variables and productions involving such

useless variables during minimization of the newly constructed β-grammar

G.

Now, in order to show

L(G) = L(M(n)),

we prove by induction on the number of steps in the derivation of G or

number of moves on M(n) that

[q, A, p] =⇒∗G w for w ∈ Σ∗ iff (q, w,A) `∗M (p, λ, λ).

(If). Firstly, we show by induction on the number of moves “i′′ made by

the SDPDA of order n that if

(q, w, q) `iM (p, λ, λ),

then

[q, A, p] =⇒∗G w.

42 A. Jain et. al

Basis. If i = 1, then w is either λ or a single real input symbol and

(p, λ) ∈ δ(q, w,A).

Thus, by the construction of production rules of G, we have

[q, A, p] −→ w is a production of G,

and so

[q, A, p] =⇒ w.

Induction: Now, suppose i > 1. Let w = au where a ∈ Σ ∪ {λ}, u ∈ Σ∗

and (q, w,A) = (q, au,A) `M (r0, u,B1, B2 · · ·Bk) `(i−1)
M (p, λ, λ).

It follows that the pair (r0, B1B2 · · ·Bk) must be in δ(q, a,A). Further,

by the construction of production rules of G, there must be a production

in G of the form

[q, A, rk]→ a[r0, B1, r1][r1, B2, r2] · · · [rk−1, Bk, rk], (1)

where rk = p and r1, r2, · · · , rk−1 are any states in Q.

In particular, we may observe that each of the symbols B1, B2, · · · , Bk

get popped off the stack in turn, and we may choose rj to be the state of the

SDPDA when Bj is popped off for j = 1, 2, · · · , k−1. Let w = w1w2 · · ·wk,

where wj is the input consumed while Bj is popped off the stack. Then we

know that

[rj−1, wj , Bj] `∗ (rj , λ, λ)

in fewer than i moves.

We apply induction hypothesis and get

[rj−1, Bj , rj] =⇒∗G wj for 1 ≤ j ≤ k − 1. (2)

We use the derivations give in (2) together with the first production

Formulation of β-language... 43

given in (1) to conclude the following:

[q, A, rk] =⇒ a[r0, B1, r1][r1, B2, r2] · · · [rk−1, Bk, rk]

=⇒∗ aw1[r1, B2, r2][r2, B3, r3] · · · [rk−1, Bk, rk]

=⇒∗ aw1w2[r2, B3, r3][[r3, B4, r4] · · · [rk−1, Bk, rk]

=⇒∗ aw1w2 · · ·wk = w,

where rk = p.

(Only-if). Conversely, suppose that

[q, A, p] =⇒∗G w,

we show by induction on the number of steps “i′′ in the derivation of w

that

(q, w,A) `∗M (p, λ, λ).

Basis. For i = 1, w is either λ or a symbol in Σ and [q,A, p]→ w must be

a production of G. The only way for this production to exist is in the case

when there is a transition of M(n) in which the symbol A is popped off the

stack and state q becomes state p. That is (p, λ) must be in (q, a,A) and

a = w. But then, we have

(q, w,A) `M (p, λ, λ).

Induction. Now, assume i > 1.

Suppose [q, A, p] =⇒∗ in i steps.

Consider the first sentential form explicitly which must look like

[q, A, rk] =⇒ a[r0, B1, r1][r1, B2, r2] · · · [rk−1, Bk, rk] =⇒(i−1) w, (3)

where rk = p.

44 A. Jain et. al

The production in (3) must come from the fact that (r0, B1B2 · · ·Bk) is in

δ(q, a, A).

We can write w as w = aw1w2 · · ·wk such that

[rj−1, Bj , rk] =⇒∗ wj for j = 1, 2, · · · , k,

with each derivation taking fewer than i steps.

By the induction hypothesis, we get

(rj−1, wj , Bj) `∗M (rj , λ, λ) for 1 ≤ j ≤ k. (4)

The sequence of ID′s in (4) clearly show that

(rj−1, wjwj+1 · · ·wk, BjBj+1 · · ·Bk) `∗ (rj , wj+1 · · ·wk, Bj+1 · · ·Bk).

If we put all these sequences together, we see that

(q, aw1w2 · · ·wk, A) ` (r0, w1w2 · · ·wk, B1B2 · · ·Bk)

`∗ (r1, w2w3 · · ·wk, B2B3 · · ·Bk)

`∗ (r2, w3w4 · · ·wk, B3B4 · · ·Bk)

`∗ · · · · · ·

`∗ (rk, λ, λ)

= (p, λ, λ)

Thus, we have

(q, w,A) =⇒∗ (p, λ, λ).

Combining the two cases, we have shown that

[q, A, p] =⇒∗G w iff (q, w,A) `∗M (p, λ, λ). (5)

Now, S =⇒∗ w iff [q0, Z0, p] =⇒∗ w for some p ∈ Q, because of the

way the rules for start symbol S are constructed.

Formulation of β-language... 45

Also, in view of (5), we have

[q0, Z0, p] =⇒∗G w iff (q, w, Z0) `∗M (p, λ, λ),

iff M(n) accepts w by empty stack.

Hence

w ∈ L(G) iff w ∈ L(M(n));

or equivalently

L(G) = L(M(n)).

Now, the required minimal β-grammar of order n can be obtained from

the β-grammar G by removing useless variables and useless productions in

G.

Example 3.2. Consider an SDPDA of order 2 that accepts the language

{wwR|w ∈ {a, b}∗} by empty stack and is given by

M(2) = {(q0, q1), {a, b}, {Z0, B,G}, δ, q0, Z0, φ},

where

Q = {q,q1} = set of states of SDPDA,

Σ = {a, b} = set of real input symbols,

Γ = {Z0, B,G} = set of real stack alphabet,

δ = transition function,

q0 = initial start state,

Z0 = stack start symbol,

46 A. Jain et. al

and δ is given by

δ(q0, a, Z0) = (q0, BZ0),

δ(q0, b, Z0) = (q0, GZ0),

δ(q0, a, B) = {(q0, BB), (q1, λ)},

δ(q0, a,G) = (q0, BG)),

δ(q0, b, B) = (q0, GB),

δ(q0, b, G) = {(q0, GG), (q1, λ)},

δ(q1, a, B) = (q1, λ),

δ(q1, b, G) = (q1, λ),

δ(q0, λ, Z0) = (q1, λ),

δ(q1, λ, Z0) = (q1, λ).

We obtain the following equivalent β-grammar G using the algorithm

discussed in Theorem 3.1:

G = (V, T, P, S)

where

V = {[q0, Z0, q0], [q), Z0, q1], [q1, Z0, q0], [q1, Z0, q1],

[q0, B, q0], [q0, B, q1], [q1, B0, q0], [q1, B, q1],

[q0, G, q0], [q0, G, q1], [q1, G, q0], [q1, G1, q1], S},

T = Σ = {a, b},

and production rules in P are given by

S −→ [q0, Z0, q0];

S −→ [q0, Z0, q1];

[q0, Z0, q0] −→ a[q0, B, q0][q0, Z0, q0]; [useless]

Formulation of β-language... 47

[q0, Z0, q0] −→ a[q0, B, q1][q1, Z0, q0];

[q0, Z0, q1] −→ a[q0, B, q0][q0, Z0, q1]; [useless]

[q0, Z0, q1] −→ a[q0, B, q1][q1, Z0, q1];

[q0, Z0, q0] −→ b[q0, G, q0][q0, Z0, q0]; [useless]

[q0, Z0, q0] −→ b[q0, G, q1][q1, Z0, q0]; [useless]

[q0, Z0, q1] −→ b[q0, G, q0][q0, Z0, q1]; [useless]

[q0, Z0, q1] −→ b[q0, G, q1][q1, Z0, q1];

[q0, B, q0] −→ a[q0, B, q0][q0, B, q0]; [useless]

[q0, B, q0] −→ a[q0, B, q1][q1, B, q0]; [useless]

[q0, B, q1] −→ a[q0, B, q0][q0, B, q1]; [useless]

[q0, B, q1] −→ a[q0, B, q1][q1, B, q1];

[q0, B, q1] −→ a;

[q0, G, q0] −→ a[q0, B, q0][q0, G, q0]; [useless]

[q0, G, q0] −→ a[q0, B, q1][q1, G, q0]; [useless]

[q0, G, q1] −→ a[q0, B, q0][q0, G, q1]; [useless]

[q0, G, q1] −→ a[q0, B, q1][q0, G, q1];

[q0, B, q0] −→ b[q0, G, q0][q0, B, q0]; [useless]

[q0, B, q0] −→ b[q0, G, q1][q1, B, q0]; [useless]

[q0, B, q1] −→ b[q0, G, q0][q0, B, q1];

[q0, B, q1] −→ b[q0, G, q1][q1, B, q1];

[q0, G, q0] −→ b[q0, G, q0][q0, G, q0]; [useless]

[q0, G, q0] −→ b[q0, G, q1][q1, G, q0]; [useless]

[q0, G, q1] −→ b[q0, G, q0][q0, G, q1]; [useless]

[q0, G, q1] −→ b[q0, G, q1][q1, G, q1];

48 A. Jain et. al

[q0, G, q1] −→ b;

[q1, B, q1] −→ a;

[q0, Z0, q1] −→ λ;

[q1, Z0, q1] −→ λ.

Eliminating the useless productions as marked above and also renaming the

variables in a user friendly form as given below:

[q0, Z0, q0] = L,

[q0, Z0, q1] = M,

[q0, B, q0] = P,

[q0, B, q1] = Q,

[q0, G, q0] = R,

[q0, G, q1] = T,

[q1, Z0, q1] = U,

[q1, B, q1] = V,

[q1, G, q1] = W,

we get the following simplified β-grammar:

S −→ L;

S −→M ;

L −→ aQU ;

M −→ aQU ;

M −→ bTU ;

Q −→ aQV ;

T −→ aQW ;

Formulation of β-language... 49

Q −→ bTQ;

Q −→ bTV ;

T −→ bTW ;

T −→ b;

V −→ a;

W −→ b;

M −→ λ;

U −→ λ.

To obtain the minimal equivalent β-grammar of order 2, we identify

L = M = U, V = Q and T = W,

and obtain the following simplified minimal equivalent β-grammar of order

2:

S −→M ;

M −→ aQM ;

M −→ bTM ;

Q −→ aQQ;

Q −→ a;

Q −→ bTQ;

T −→ aQT ;

T −→ bTT ;

T −→ b;

M −→ λ.

50 A. Jain et. al

Illustration. Consider the derivation of string abaaba:

S →M → aQM → abTQM → abaQTQM → abaaTQM → abaabQM

→ abaabaM → abaaba.

4. Conclusion

In this paper, we have discussed an induction based algorithmic method

to construct a β-grammar (equivalently β-language) from the language of

a given SDPDA of order n. The initial order of the constructed β-grammar

depends on the number of states as well as the order “n′′ of the given

SDPDA. But after removing useless variables and useless productions, we

obtain the minimal equivalent β-grammar of order exactly equal to the

order of the language of the given SDPDA.

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation and

Computing, Vol. 1, Englewood Cliffs. N.J.: Prentice Hall, 1972.

[2] M.A. Harriosn, Introduction to Fromal languages Theory, Addison

Wesley, Reading, Mass., 1978.

[3] J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Au-

tomata Theory, Languages, and Computation, Pearson Education,

Addison-Wesley, Reading, Mass., 2004.

[4] A. Jain, G.C. Petalcorin, Jr. and K.-S. Lee, Semi-deterministic push-

down automata (SDPDA) of order “n” and β-languages, J. Algeb.

and Applied Mathematics, 14 (2016), 27-40.

[5] A. Jain, K.P. Shum, G.C. Petalcorin, Jr. and K.-S. Lee, α-grammar

and quasi-deterministic pushdown automta (QDPDA) of order “n”,

J. Algeb. and Applied Mathematics, 18 (2020), 99-114.

Formulation of β-language... 51

[6] A. Jain, S. Jain and G.C. Petalcorin, Jr.: Construction of α-language

from the language of a QDPDA of order “n”, J. Anal. and Appl., 20

(2022), 135-150.

[7] P. Linz, An Introduction to Formal lanuages and Automta, Narosa

Publishing House, 2009.

[8] I. Petre and S. Arto, Algebraic systems and pushdown automata, In

M. Drosde, W. Kuick and H. Vogler, Ed., Handbook of Weighted

Automata, Springer, Chapter 7, 2009, pp.257-289.

[9] G.E. Revesz, Introduction to Formal Languages, McGraw-Hill, 1983.

[10] A. Salomaa, Computations and Automata, in Encyclopedia of Mathe-

matics and Its Applications, Cambridge University Press, Ca,mbridge,

1985.

[11] W. Kuich and S. Arto, Semirings, automata, languages, Springer Ver-

lag, 1986.

Department of Mathematics

Shanxi Normal University

P.R. China

E-mail: jainarihant@gmx.com

Department of Mathematics

Shanxi Normal University

P.R. China

E-mail: sapnajain@gmx.com

52 A. Jain et. al

Department of Mathematics

Science College

Jazan university

Kingdom of Saudi Arabia

E-mail: hqghazwani@jazanu.edu.sa

Department of Mathematics and Statistics

College of Science and Mathematics

MSU-Iligan Institute of Technology

Tibanga, Iligan City

Philippines

E-mail: gaudencio.petalcorin@g.msuiit.edu.ph

(Received: December, 2022; Revised: January, 2023)

